Solution outlines

BAPC Finals 2011

October 15, 2011

J - Treasure Map

Problem

Find smallest x and y such that $N=y^{2}-x^{2}$

Observation

$$
y^{2}-x^{2}=(y-x)(y+x)=N
$$

Solution

- Not possible if and only if N mod $4=2$
- For all dividers d of N , try to solve:
$\square d=(y-x) \quad 2 x=N / d-d$
$\square N / d=(y+x) \quad 2 y=N / d+d$
- Keep smallest x and y such that $x, y \in \mathbb{N}$

H - Walking the Plank

- Basic simulation problem
- Keep track of the queues on both sides
- Use priority queue for efficiency
- Make sure order of pirates is correct!
- Then simply handle all events correctly

B - Quick out of the Harbour

- Basically a shortest path problem
- Solve using Dijkstra
\square Also possible using BFS
- But not in a standard way!
- Somehow need to expand single step into d+1 steps

F - Ultimate Finishing Strike

Idea

Copy and mirror room to simulate reflection (bouncing)

- Check "rooms" with k bounces
- Simply compute closest
- Compute type of bounces
- Runs in $\mathrm{O}(\mathrm{k})$ time
- Finally sort and remove duplicates
- Watch out for overflow!
- Also possible in O(1) time

Observation
Clearly ships must follow order of centers

DP Solution

- $\mathrm{F}[\mathrm{i}][\mathrm{k}]=$ minimum coordinate of right side of rightmost ship placing k ships of ships 1 .. i (∞ if not feasible)
- For every ship, decide to place it (if possible) or not
- Place a ship as far to the left as possible
- Use special case for captain (or solve two problems)

Greedy Solution

- Choose as next ship the one for which the right side is leftmost
- Break ties by order of centers
- Can run in $O(n \log n)$ time, but $O\left(n^{2}\right)(D P)$ is fine

D - Bad Wiring

Observations

- Order does not matter
- Flipping a switch twice does nothing
- Solution is essentially a bitstring
- Simple backtracking from left to right
- Flip switch or not
- At some point light moves out of "window"
- At that point choice is fixed
- Running time is $\mathrm{O}\left(\mathrm{nD} 2^{\mathrm{D}}\right)$

Alternative solution

- Solve linear system in Z_{2}
- Solution not unique!
- Also compute null-space

A - Popping Balloons

- See all balloons as circular intervals
- Requires some geometric computations
- Consider canonical solutions
- Each line passes through endpoint interval
- Find smallest set of lines piercing all intervals
- Pick a starting line (try all)
- Compute the rest greedily
- Also possible in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time

G - Doubloon game

Another NIM-variant

- Like Shuriken Game from Preliminaries
- This time DP does not work

Nice Solution

- Use "nimbers" from impartial game theory
- $F(0)=0, \quad 0$ means you lose
- $F(n)=\operatorname{mex}(\{F(x) \mid n-x$ is power of $K\})$
- K odd $\square F(n)=n \bmod 2$
- K even $\square F(n)=\{2 \quad$ if $n \bmod (K+1)=K$
($\mathrm{n} \bmod (\mathrm{K}+1)) \bmod 2$ otherwise
- Optimal solution is 1 or K (or 0)

Simple Solution: Simply recognize pattern and make formula

E - Undercover Pirate

Notation

Category A: "Ninjas" that can weigh $\mathrm{W}, \geq \mathrm{W}$, or $\leq \mathrm{W}$
Category B: "Ninjas" that can weigh W or $\geq \mathrm{W}$
Category C: "Ninjas" that can weigh W or $\leq W$
Category D: Ninjas that weigh W
k: \#times to use the scale

Necessary invariant: $2|\mathrm{~A}|+|\mathrm{B}|+|\mathrm{C}| \leq 3^{\mathrm{k}}$

Case 1 (start case):

$$
\begin{aligned}
& x=\min \left(|A| / 2,\left(3^{k-1}-1\right) / 2\right) \\
& x \text { of } A \quad \text { vs. } x \text { of } A
\end{aligned}
$$

E - Undercover Pirate

Necessary invariant: $2|\mathrm{~A}|+|\mathrm{B}|+|\mathrm{C}| \leq 3^{\mathrm{k}}$

Case $2(|A| \leq|D|,|B|=|C|=0)$:

$$
\begin{aligned}
& x=\min \left(|A|, 3^{k-1}\right) \\
& x \text { of } A \quad \text { vs. } x \text { of } D
\end{aligned}
$$

Case $3\left(|A|=0,|B|+|C| \leq 3^{k}\right.$, assume $\left.|B| \geq|C|\right)$:
Case 3 a ($|\mathrm{B}| / 2<3^{k-1}$):

$$
\begin{aligned}
& x=|B| / 2, y=\min \left(|C| / 2,3^{k-1}-x\right) \\
& x \text { of } B \text { and } y \text { of } C \quad \text { vs. } x \text { of } B \text { and } y \text { of } C
\end{aligned}
$$

Case $3 \mathrm{~b}\left(|\mathrm{~B}| / 2 \geq 3^{k-1}\right): 3^{k-1}$ of $B \quad$ vs. 3^{k-1} of B

- Also a base case for $\mathrm{k}=1$
- Tricky to keep track of (ranges) of ninjas

C - Find the Treasure

- Every view defines a line
- Island with treasure must be above or below line

Basic solution

- Construct convex polygon from lines - Use amortized O(log m) per line
\square Check every island with convex polygon - Use $O(\log m)$ time per island

C - Find the Treasure

Alternative solution

- Duality!
- A point $p=\left(x_{p}, y_{p}\right)$ becomes a line $p^{*}: x_{p} x-y_{p}$
- A line L : $A x+B$ becomes a point $L^{*}=(A,-B)$
- Aboveness relation is preserved
- Every line (view) is now a point
- Compute two convex chains
- Use Graham scan or ...
\square Every island is now a line
- Island is valid if it doesn't cross a chain
- Determine using binary search

